Preliminary communication

The reaction of allene with acetylacetonato- π -allylpalladium(II): formation of 2,2'-bj- π -allyl complexes of palladium(II)

R.P. HUGHES and J. POWELL

Lash Miller Chemical Laboratories, University of Toronto, Toronto 181, Ontario (Canada) (Received August 28th, 1969)

Recently, considerable interest has been focussed on the insertion of dienes into π -allyl-transition metal bonds ¹⁻³. Although most of the work reported concerns 1,3-dienes, the reaction of halogeno-bridged- π -allylpalladium(II) complexes with allene, a 1,2-diene, has been briefly reported to yield insertion products (similar to (Ib) - see below)². As part of a general study of the nature and reactivity of π -allylic ligands, we have investigated the reaction of allene with acetylacetonato- π -allylpalladium(II) and have noted an unusual side-reaction involving coupling of two molecules of allene and intermolecular coupling of two allyl groups to give a 2,2'-bi- π -allyl complex of palladium(II) and 1,5-hexadiene, respectively. Such coupling reactions may well be important in transition metal catalysed reactions of allene to yield oligomers of unusual structure⁴.

A benzene solution of acetylacetonato- π -allylpalladium(II) reacts with allene to give the insertion product (Ia) in high yield. The structure of (Ia) has been established by analysis and spectroscopic methods IR ν (C=C) 1645 cm⁻¹; NMR H_a 7.24 τ (singlet, 2 H), $H_b 6.37 \tau$ (singlet, 2 H), $H_c 6.88 \tau$ (doublet, 2 H, $J_{cd} = 6$ cps), $H_d 4.10 \tau$ (multiplet, 1 H), $H_e 4.75 \tau$ (multiplet, 1 H), $H_f 4.97 \tau$ (multiplet, 1 H), Acac protons 4.65 τ (singlet, 1 H), 8.02 τ (singlet, 6 H), and also by conversion to the dimeric chloride-bridged analogue (Ib) IR, ν (C=C) 1645 cm⁻¹; NMR, H_a 7.09 τ (singlet, 2 H), H_b 6.13 τ singlet, 2 H), H_c 6.94 τ (doublet, 2 H, J_{cd} = 6 cps), H_d 4.01 τ (multiplet, 1 H), H_e 4.73 τ (multiplet, 1 H), $H_f 4.86 \tau$ (multiplet, 1 H). A sparingly soluble, white crystalline material is also obtained in low yield. This has been shown to be bis(acetylacetonato)-2,2'bi-*π*-allyldipalladium(II) (IIa), one of a series of 2,2'-bi-*π*-allyl complexes of palladium(II) which we have prepared and characterized. Higher reactant concentrations increase the yield of complex (IIa) to ca.40%. The major organic product has been shown by GLC analysis to be 1,5-hexadiene. Treatment of complex (IIa) with dry HCl yields the insoluble chloride-bridged complex (IIb). A high yield synthesis of (IIb) is afforded by reaction of di-µ-chlorobis [β-(3-chloroprop-1-en-2yl)allyl] dipalladium(II)^{5,6}, with lithium chloropalladite and carbon monoxide in aqueous methanol/chloroform. Treatment of (IIb), prepared by either method, with thallous acetylacetonate, cyclopentadienyl sodium, or silver acetate yields complexes (IIa), (IIc), and (III) respectively. { (IIa): NMR, H_a 7.19 τ (singlet, 4 H), H_b 5.99 τ (singlet, 4H), Acac protons 4.67 τ (singlet, 2 H), 8.04 τ (singlet, 12 H); mass spectrum, *m/e* 490 [C₁₆H₂₂O₄¹⁰⁶ Pd₂]⁺; (IIc): NMR, H_a 7.76 τ (singlet, 4 H),

J. Organometal. Chem., 20 (1969) P17-P19

H_b 6.35 τ (singlet, 4 H), cyclopentadienyl proton 4.22 τ (singlet, 10 H); mass spectrum, m/e 422 [C₁₆H₁₈¹⁰⁶ Pd₂]⁺; (III): mass spectrum, m/e 410 [C₁₀H₁₄O₄¹⁰⁶Pd₂]⁺} *.

The ¹H NMR spectrum of complex (III) exhibits four resonances attributable to protons of the bi- π -allyl ligand {5.86 τ (singlet, 2 H), 6.14 τ (singlet, 2 H), 6.93 τ (singlet, 2 H), 7.33 τ (singlet, 2 H), acetate protons 7.97 τ (singlet, 6 H) [temperature independent from -100° to +60°]} indicating a molecular symmetry lower than $C_{2\nu}$. Presumably the rigidity of the dimeric acetato-palladium unit (Pd–Pd distance 2.94 Å)⁷ imparts strain on the ligand, causing distortion. The ¹H NMR spectra of the analogous propionate, isobutyrate, phenylacetate and benzoate all show four singlet peaks for the 2,2'-bi- π -allyl protons. An X-ray crystallographic study of complex (III) is now in progress.

The above reaction represents the first example of the formation of a 2,2'-bi- π allyl ligand from the reaction of allene with a mononuclear transition metal complex. The only other reported examples of 2,2'-bi- π -allyl formation directly from a 1,2-diene involve reaction of allenes with the bi- and tri-nuclear iron carbonyls, Fe₂(CO)₉ and Fe₃(CO)₁₂ to give complexes of the type (C₆H₈)Fe₂(CO)₆⁸⁻¹⁰.

Further studies of the nature of π -allyl/1,2-diene reactions and of the possible significance of 2,2'-bi- π -allyl intermediates in transition metal catalysed oligomerisation reactions of 1,2'-dienes are being conducted.

ACKNOWLEDGEMENT

We thank the National Research Council of Canada for financial support of this investigation.

^{*}Satisfactory analyses have been obtained for all 2,2'-bi- π -allyl complexes. NMR spectra were run in CDCl₃ solution at 100 MHz using TMS as internal reference.

J. Organometal. Chem., 20 (1969) P17-P19

PRELIMINARY COMMUNICATION

REFERENCES

- 1 Y. Takahashi, S. Sakai and Y. Ishii, J. Organometal. Chem., 16 (1969) 177.
- 2 R. Van Helden, C.F. Kohll, D. Medena, G. Verberg and T. Jonkhoff, Rec. trav. chim. Pays Bas, 87 (1968) 961.
- 3 A. Bright, B.L. Shaw and G. Shaw, Abstr. 157th Nat. Meeting, Amer. Chem. Soc., Minneapolis, April 13-18, 1969.
- 4 S. Otsuka, K. Tani and A. Nakamura, J. Chem. Soc. (A), (1969) 1404, and references cited therein.
- 5 M.S. Lupin, J. Powell and B.L. Shaw, J. Chem. Soc. (A), (1966) 1687.
- 6 R.G. Schultz, Tetrahedron, 20 (1964), 2809.
- 7 M.R. Churchill and R. Mason, Nature, 204 (1964) 777.
- 8 R. Ben-Shoshan and R. Pettit, Chem. Commun., (1968) 247
- 9 A. Nakamura, P.-J. Kim and N. Hagihara, J. Organometal. Chem., 3 (1965) 7.
- 10 S. Otsuka, A. Nakamura and K. Tani, J. Chem. Soc. (A), (1968) 2248.

J. Organometal. Chem., 20 (1969) P17-P19